摘要:本文收集深度学习在药物发现、设计领域的应用,软件(源代码)、学习资源以及科技公司信息等。

肖高铿/2019-10-29

本文收集深度学习机器学习在药物设计中的应用文献、软件(源代码)、学习资源以及科技公司等。目前处于随机状态,并不系统。

深度学习与基于结构的设计(分子对接、打分函数、基于结构的虚拟筛选等)

  1. Izhar, W.; Michael, D.; Abraham, H. AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-Based Drug Discovery. arXiv:1510.02855 2015.
  2. Cruz Pereira, J.; Raúl Caffarena, E.; Nogueira dos Santos, C. Boosting Docking-Based Virtual Screening with Deep Learning. J. Chem. Inf. Model. 2016, 56 (12), 2495–2506. https://doi.org/10.1021/acs.jcim.6b00355.
  3. Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. Protein–Ligand Scoring with Convolutional Neural Networks. J. Chem. Inf. Model. 2017, 57 (4), 942–957. https://doi.org/10.1021/acs.jcim.6b00740.
  4. Ragoza, M.; Turner, L.; Koes, D. R. Ligand Pose Optimization with Atomic Grid-Based Convolutional Neural Networks. 2017.https://arxiv.org/abs/1710.07400
  5. Gomes, J.; Ramsundar, B.; Feinberg, E. N.; Pande, V. S. Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity. arXiv:1703.10603 2017, 1–17.
  6. Hochuli, J.; Helbling, A.; Skaist, T.; Ragoza, M.; Koes, D. R. Visualizing Convolutional Neural Network Protein-Ligand Scoring. J. Mol. Graph. Model. 2018. https://doi.org/10.1016/j.jmgm.2018.06.005.
  7. Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: Deep Drug–Target Binding Affinity Prediction. Bioinformatics 2018, 34 (17), i821–i829. https://doi.org/10.1093/bioinformatics/bty593.
  8. Sunseri, J.; King, J. E.; Francoeur, P. G.; Koes, D. R. Convolutional Neural Network Scoring and Minimization in the D3R 2017 Community Challenge. J. Comput. Aided. Mol. Des. 2019, 33 (1), 19–34. https://doi.org/10.1007/s10822-018-0133-y.
  9. Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. K DEEP : Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networ